Problem 4

Solve the inequality $|x-1|-|x-3| \geq 5$.

Solution

Isolate one of the terms with an absolute value sign.

$$
|x-1| \geq 5+|x-3|
$$

Remove the absolute value sign by splitting the inequality into two.

$$
x-1 \geq(5+|x-3|) \quad \text { or } \quad x-1 \leq-(5+|x-3|)
$$

Solve for the remaining term with an absolute value sign in each inequality.

$$
|x-3| \leq x-6 \quad \text { or } \quad|x-3| \leq-x-4
$$

Remove the absolute value signs by splitting each inequality into two.

$$
\begin{gathered}
{[-(x-6) \leq x-3 \leq x-6] \quad \text { or } \quad[-(-x-4) \leq x-3 \leq-x-4]} \\
(x-3 \geq-x+6 \text { and } x-3 \leq x-6) \quad \text { or } \quad(x-3 \geq x+4 \quad \text { and } \quad x-3 \leq-x-4)
\end{gathered}
$$

Solve for x.

$$
\left(x \geq \frac{9}{2} \quad \text { and } \quad-3 \leq-6\right) \quad \text { or } \quad\left(-3 \geq 4 \quad \text { and } \quad x \leq-\frac{1}{2}\right)
$$

This is a false statement regardless of what x is. Therefore, there's no solution. This is reflected in the graph by the fact that the blue curve never reaches the red curve.

